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Abstract

We put forward an efficient algorithm for approximating the sums of independent and log-

normally distributed random variables. Namely, by combining tools from probability theory and nu-

merical analysis, we are able to compute the cumulative distribution functions of the just-mentioned

sums to a high precision and in a relatively short computing time. We illustrate the effectiveness

of the new method in the contexts of the individual and collective risk models, aggregate economic

capital determination, and economic capital allocation.
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individual risk model, collective risk model, economic capital

JEL Classification: C02, C46, C63

1 Introduction

The log-normal distribution has been found appropriate for modelling losses originating from a great

variety of non-life insurance risks (e.g., Mikosch, 2009; Klugman et al., 2012). More specifically, Kleiber

and Kotz (2003) mention applications in property, fire, hurricane, and motor insurances, to name just

a few (also, e.g., Dropkin, 1964; Bickerstaff, 1972; O’Neill and Wells, 1972). Furthermore the standard
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formula of the European Insurance and Occupational Pensions Authority explicitely assumes the log-

normality of insurers’ losses (EIOPA-14-322, 2014). Finally, the role of the log-normal distribution is

at least as profound in finance, where it serves as the canonical model describing stock price returns

(e.g., Sprenkle, 1964; Milevsky and Posner, 1998). For a multitude of applications of the log-normal

distribution in other areas, we refer to Limpert et al. (2001) and references therein.

Recall that the random variable (r.v.) L is said to be distributed log-normally with parameters

µ ∈ (−∞,∞) and σ > 0, succinctly L ∼ LN(µ, σ2), if its probability density function (p.d.f.) is given

by

fL(x) =
1

x
√

2πσ2
exp

(
−1

2

(
ln(x)− µ

σ

)2
)

for x > 0. (1)

Although L is merely an exponential of the well-understood Gaussian r.v., it has been puzzling re-

searchers for decades. For instance, an explicit expression for the Laplace transform of (1) has eluded

mathematicians thus far, and the existing series representations are rather cumbersome (Leipnik, 1991).

Recently, Asmussen et al. (2016a) reported a closed form approximation for the Laplace transform of

(1) that works quite well for small values of the σ parameter and is asymptotically equivalent to the

approximated Laplace transform.

In this paper we are interested in a related problem of log-normal convolutions. In fact, the convolu-

tions of log-normal distributions have drawn considerable attention of researchers and practitioners due

to the fundamental importance of log-normal sums in engineering, biology, ecology, and economics, as

well as in actuarial science and finance. It is not surprising therefore that the existing contributions on

the topic are abundant and span all of the just-mentioned areas (see Dufresne, 2008; Asmussen et al.,

2011, for recent literature reviews).

The problem is admittedly very intricate, and no explicit solution is generally available. The existing

methods to approximate the log-normal convolutions can be associated with the following three main

threads, or their variants: (i) moment matching method and its modifications, (ii) series representations

of the Laplace transform, and (iii) asymptotic results.

The moment matching method is akin to the idea of approximating the convolutions of log-normal

distributions by means of other distributions. It seems that for the first time this method was documented

in Fenton (1960), who employs the log-normal distribution with the first and second moments being equal

to the first and second moments of the desired log-normal sum (e.g., Beaulieu et al., 1995; Milevsky and

Posner, 1998). The idea is further refined in Chen et al. (2008) and Zhang and Song (2008), who utilize

the four-parameter Pearson IV family of distributions to approximate the distribution of log-normal

sums. An alternative - analytical - way to approximate the convolutions of log-normal distributions

is by inverting the corresponding Laplace transform, which is to this end expanded into a series. In

this respect, Holgate (1989) discusses several techniques for approximating the characteristic function

of the log-normal distribution using the re-summation of divergent series, and also provides asymptotic
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approximations, and Leipnik (1991) derives a convergent series representation for the characteristic

function (though Miles (2018) has recently shown that Leipnik’s integral representation and the resulting

series expansion are incorrect). Last but not least, asymptotic approximations of the convolutions of

log-normal distributions are derived in Asmussen and Rojas-Nandayapa (2008) (see also Dhaene et al.,

2008; Gulisashvili and Tankov, 2016). Methods that do not immediately fit within the research directions

above also exist (e.g., Vanduffel et al., 2008; Asmussen et al., 2016b; Botev et al., 2018; Asmussen, 2018).

Unfortunately, none of the existing approaches is perfect and some of them may deliver inaccurate

results for certain values of parameters. This is particularly so for large values of the σ parameter, and

when a small number of log-normally distributed summands are considered. The reasons are that in

the former case the distribution of L ∼ LN(µ, σ2) would have heavier tails, and in the latter case the

Central Limit Theorem would not apply (Asmussen et al., 2011). The solution that we propose in this

paper is distinct in that it is based on a synthesis of tools from probability theory, complex analysis and

numerical analysis. Our main contribution is that we construct an approximant r.v., L̃, such that the

Laplace transform of its distribution converges uniformly and exponentially fast to the Laplace transform

of the distribution of L ∼ LN(µ, σ2). The approximating Laplace transform of the desired convolution

then follows immediately, and the cumulative distribution function (c.d.f.) of the convolution is obtained

via routine Laplace transform inversion techniques. The proposed method performs very well in the

body of the distribution of the sum and surprisingly well in the intermediate tail region, it is quick when

tackling numerous summands of varying tail thickness, allows for any level of accuracy, and, last but not

least, it is suitable for computing the c.d.f.’s of the sums of independent and not-necessarily log-normally

distributed r.v.’s.

We illustrate the efficiency of our approach with a few examples borrowed from the context of eco-

nomic capital determination and allocation within the individual and collective risk models. We recall

that, for mutually independent r.v.’s X1, X2, . . . , the r.v.

Sn := X1 + · · ·+Xn

is called an Individual Risk Model (IRM). If the r.v.’s X1, X2, . . . are independent and identically

distributed (i.i.d.), and N is a random variable that takes values in {0, 1, 2, . . . } and independent on

{Xi}i≥1, then we call SN := X1 + · · · + XN a Collective Risk Model (CRM). In the following we often

write SN irrespective of whether the CRM or IRM is considered. This is admittedly a slight abuse of

notation, but it simplifies the exposition greatly.

The aforementioned choice of applications is obviously not ad hoc. Indeed, besides the clear link to

the notion of convolutions, the individual and, also, collective risk models have been taught to actuarial

students for many years now, and the two models have manifested ubiquitously in both theoretical and

practical loss modelling (e.g., Kaas et al., 2008; Klugman et al., 2012). In addition, from the point of

view of the modern insurance regulation (e.g., Solvency II, and equivalents), it is essential to evaluate
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the economic capital required for supporting the aggregate risk r.v. SN (herein we use the notions “risk”

and “loss” interchangeably). In this paper we touch on all of the above. Namely, we assume that {Xi}i≥1
are independent and log-normally distributed r.v.’s and compute the Value-at-Risk (VaR)

VaRq[SN ] := inf {s ∈ R : P[SN ≤ s] ≥ q} (2)

and the Conditional Tail Expectation (CTE)

CTEq[SN ] := E[SN | SN > VaRq[SN ]] for SN with finite mean (3)

risk measures, where q ∈ [0, 1) is the prudence parameter, and N is deterministic or random. The VaR

and the CTE risk measures do not require advertisement, as their popularity in insurance and banking

is immense (Artzner et al., 1999; McNeil et al., 2005; Denuit et al., 2006). For the situations when the

variability of the tail risk is of interest, we compute the Tail Variance (TV) risk measure

TVq[SN ] := Var[SN | SN > VaRq[SN ]] for SN with finite variance (4)

(Furman and Landsman, 2006). Furthermore, we compute the economic capital allocations that cor-

respond to risk measures (3) and (4) (Furman and Zitikis, 2008a; Dhaene et al., 2012, and references

therein) when the r.v.’s {Xi}i≥1 are distributed log-normally, and N is deterministic or random.

The rest of the paper is organized as follows. In Section 2 we describe our method, formulate and

prove the main results. Further, in Section 3 we show how to implement our approximation scheme, and

then in Sections 4, 5 and 6 elucidate it with examples. In Section 7 we discuss the computation time

of our algorithm, and Section 8 provides concluding remarks. Some well-known but worthy to mention

details about the numerical inversion of the Laplace transform are relegated to Appendix A.

2 The analytical basis for the proposed method

Let us first present some important notation. For a non-negative r.v. X, we denote by φX(z) :=

E[exp(−zX)], Re(z) ≥ 0 the Laplace transform of X and by FX(x) := P(X ≤ x) the c.d.f. of X. The

inverse Laplace transform is denoted by L−1.
Now we briefly explain the main ideas behind our method. Our goal is to construct a random

variable, L̃, whose Laplace transform φL̃(z) is easily computable and approximates the Laplace transform

of L ∼ LN(0, σ2). Once this is done, we are able to compute any quantity of interest by using Laplace

transform techniques. Our approximation, L̃, is of the form

L̃ =
m∑
i=1

Γi, (5)
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where Γi ∼ Ga(αi, βi), i = 1, . . . ,m are independent gamma distributed r.v.’s with rate and shape

parameters βi > 0 and αi > 0, respectively. We show in the sequel that, for each m ≥ 1, it is possible

to choose the parameters αi and βi in such a way that as m → +∞ the Laplace transforms φL̃(z)

converge to φL(z) exponentially fast (on compact subsets of C \ (−∞, 0]), and we present an algorithm

for computing these parameters.

Without loss of generality, we restrict ourselves to considering only unit scale log-normally distributed

r.v.’s L ∼ LN(0, σ2), or, succinctly, L ∼ LN(σ2). Once we have constructed a r.v., L̃, whose distribution

approximates the distribution of L ∼ LN(σ2), it can be used to approximate the Laplace transform of

the more general three parameter log-normal p.d.f. (e.g., O’Neill and Wells, 1972)

f(x) =
1

x
√

2πσ2
exp

(
−1

2

(
ln(x− τ)− µ

σ

)2
)

for x > τ. (6)

This is obviously true because the Laplace transform of (6) is given by e−zτφL (zeµ) for Re(z) ≥ 0, and

so its approximation is simply e−zτφL̃ (zeµ) for Re(z) ≥ 0.

Once we know how to approximate a single log-normal r.v., it is clear how to approximate a sum of

such r.v.’s. For example, consider the Individual Risk Model. Let the r.v.’s Li ∼ LN(σ2
i ), i = 1, . . . , n

be independent and let Sn = L1 + · · ·+Ln. Then we can approximate Sn by S̃n := L̃1 + · · ·+ L̃n, where

{L̃i}1≤i≤n are independent and each L̃i is an approximation to the corresponding r.v. Li. The Laplace

transform of S̃n can then be easily computed via

φS̃n
(z) =

n∏
i=1

φL̃i
(z), Re(z) ≥ 0, (7)

and any quantity of interest can be found by inverting the corresponding Laplace transform. For example,

if we are interested in the c.d.f of S̃n, we compute it via

FS̃n
(x) = L−1

{
φS̃n

(z)

z

}
(x) for x ≥ 0. (8)

In a similar fashion we can deal with the Collective Risk Model. If N is a r.v. with the probability

generating function (p.g.f.) GN(z) := E
[
zN
]
, and the r.v.’s Li, i = 1, . . . , N are (i) distributed as

a canonical r.v. L ∼ LN(σ2) and (ii) independent from each other and from the r.v. N , then we

can approximate the compound sum SN by S̃N = L̃1 + · · · + L̃N , where {Li}i≥1 are independent and

distributed as L̃, which is our approximation to L. The Laplace transform of S̃N is easily computed via

φS̃N
(z) = GN

(
φL̃(z)

)
, Re(z) ≥ 0. (9)

The rest of this section presents our approach for approximating the Laplace transform of the r.v.

L ∼ LN(σ2).
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2.1 Generalized Gamma Convolutions and the approximation of the log-

normal Laplace transform

In view of the discussion hitherto, constructing an approximation L̃ to L ∼ LN(σ2) is fundamental for

us. To this end, we turn to a class of distributions that contains the log-normal distribution as a special

case. Indeed, it often happens in the mathematical sciences that generalizing an object highlights its

essence and in this way helps to understand it better, and our problem is not an exception.

More formally, it is known that the distribution of L ∼ LN(σ2) is a limiting distribution of a sequence

of convolutions of gamma distributions, and it is thus infinitely divisible (Thorin, 1977; Bondesson, 2002).

This motivates the introduction and study of the class of Generalized Gamma Convolutions as follows.

Definition 1 (Thorin (1977); Bondesson (1992)). The distribution on [0, ∞) of the r.v. X is a Gener-

alized Gamma Convolution (GGC) if its Laplace transform is

φX(z) = exp
(
− az −

∫ ∞
0

ln(1 + z/t)U(dt)
)

for Re(z) ≥ 0, (10)

where a ∈ [0, ∞) is a constant, and U(dt) is a positive Radon measure, also called Thorin measure,

which must satisfy ∫ ∞
0

min(| ln(t)|, 1/t)U(dt) <∞.

Besides the already-mentioned log-normal and gamma, the class of GGC’s comprises such well-known

to actuaries distributions, as Pareto, inverse Gaussian, inverse gamma, Beta prime, Weibull (with shape

parameter less than one), among many others.

Remark 1. Set a = 0 in (10) for convenience and without loss of generality, and notice that if U(dt)

is a discrete measure, then (10) is the Laplace transform of a finite convolution of gamma distributions,

thus motivating the name GGC.

We now briefly explain the main idea behind our approach. Let X be a random variable with a

distribution in the class of GGC’s. The distribution of X can be approximated arbitrarily well by the

distributions of finite sums of the form

X̃ :=
m∑
i=1

Γi, (11)

where Γi ∼ Ga(αi, βi) denote independent gamma distributed r.v.’s with shape parameters αi > 0 and

rate parameters βi > 0. Note that approximating the distribution of X by the distribution of X̃ of form

(11) is equivalent to approximating the Laplace transform φX(z) = E[exp(−zX)] by functions of the

form

φX̃(z) = E[exp(−zX̃)] =
m∏
i=1

E[exp(−zΓi)] =
m∏
i=1

(1 + z/βi)
−αi for Re(z) ≥ 0. (12)
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Before stating the main result in this section, we need to present one definition. For c > 0 and a

positive r.v. X we define the Esscher transform r.v. X(c) via the distribution function

P(X(c) ∈ dx) =
e−cx

E[e−cX ]
P(X ∈ dx) for x > 0.

(e.g. Asmussen et al., 2016b, for applications of the Esscher transform in the context of the log-normal

distribution). Now we are ready to state our first main result in this section.

Theorem 1. Let the r.v. X have a distribution in the class of GGC’s, and assume that X is not of the

form in (11). Fix z∗ > 0 and m ∈ N. There exist positive numbers {αi}1≤i≤m and {βi}1≤i≤m such that

the r.v. X̃ defined by (11) satisfies

E[(X̃(z∗))k] = E[(X(z∗))k] (13)

for 1 ≤ k ≤ 2m. Moreover, the numbers {αi}1≤i≤m and {βi}1≤i≤m are unique (up to permutation).

Definition 2. The random variable X̃, whose distribution is uniquely characterized by Theorem 1, is

called an (m, z∗)-approximant of X.

Our second main result shows that (for any fixed z∗) as m increases to +∞, the distribution of the

(m, z∗)-approximant of X converges weakly to the distribution of X, and the convergence is very fast in

the Laplace transform domain.

Theorem 2. Let the r.v. X have a distribution in the class of GGC’s, and assume that X is not of

the form in (11). Fix z∗ > 0 and define, for each m ∈ N, the r.v. X̃m to be the (m, z∗)-approximant

of X. Then the functions φX̃m
(z) := E[exp(−zX̃m)] converge to φX(z) = E[exp(−zX)] as m → +∞,

exponentially fast and uniformly on compact subsets of C \ (−∞, 0]. In particular, X̃m
d→ X.

Remark 2. Theorem 1 warrants that the proposed approximating scheme is parsimonious. More specif-

ically, in order to match the first 2m moments of the Esscher transform of the distribution of the (m, z∗)-

approximant r.v. and the r.v. X, we would need at least 2m parameters, thus our approximation is

optimal in this sense.

Remark 3. In general one can not take z∗ = 0 in Theorem 1. This is due to the fact that not

all distributions are determined by their moments (for example, it is well-known that the log-normal

distribution is not uniquely determined by its moments). Therefore the use of the Esscher transform is

unavoidable in our method.

Proof of Theorem 1. Without loss of generality we may assume that a = 0 in (10). Let U(dt) be the

Thorin measure as appears in (10). We define the two functions

ψ(z) = − d

dz
ln(φX(z)) =

∫ ∞
0

U(dt)

t+ z
, (14)
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and ψ∗(z) = ψ(z + z∗) for z > 0. The function ψ is analytic in C \ (−∞, 0], thus ψ∗ is analytic in

C \ (−∞,−z∗]. After the change of variables w = 1/(t + z∗) in (14), the function ψ∗ can be written in

the form

ψ∗(z) =

∫ 1/z∗

0

µ(dw)

1 + wz
(15)

for a positive measure µ(dw) on (0, 1/z∗), which is simply the pushforward of U(dt) using the function

w(t) = 1/(t + z∗). Integral representation (15) tells us that ψ∗(z) is a Stieltjes function, and it is well-

known (Baker and Graves-Morris, 1996) that Stieltjes functions can be approximated very well by certain

rational functions, called Padé approximants. This is the central idea behind the proof of Theorem 1.

First of all, we note that the function ψ∗ is analytic in the disk |z| < z∗, thus it can be expanded in

Taylor series as follows

ψ∗(z) =
∑
k≥0

skz
k, (16)

where

sk =
ψ∗(k)(0)

k!
=
ψ(k)(z∗)

k!
. (17)

The [m − 1/m] Padé approximation to ψ∗ is a rational function of the form P (z)/Q(z), where P (z) =

a0 +a1z+a2z
2 + · · ·+am−1z

m−1 and Q(z) = 1+ b1z+ b2z
2 + · · ·+ bmz

m are two polynomials that satisfy

P (z)

Q(z)
− ψ∗(z) = O(z2m) for z → 0. (18)

In other words, the first 2m coefficients of the Taylor expansion of P (z)/Q(z) at zero should match the

corresponding 2m coefficients of ψ∗. According to Corollary 1 on page 164 in Baker and Graves-Morris

(1996), due to the fact that ψ∗ is a Stieltjes function, the [m − 1/m] Padé approximation to ψ∗ exists

and is unique. Furthermore, Theorem 5.4.1 in Baker and Graves-Morris (1996) (also Theorems 2.2 and

3.1 in Allen et al., 1975) tells us that the denominator Q(z) of the [m− 1/m] Padé approximation has m

simple zeros zi that lie in (−∞,−z∗) and that the rational function ψ∗m(z) := P (z)/Q(z) can be written

in the partial fraction form as

ψ∗m(z) =
m∑
i=1

αi
z − zi

, (19)

where αi = P (zi)/Q
′(zi) > 0, for i = 1, . . . ,m. Let us define βi = −zi − z∗ (note that βi > 0). We claim

that the numbers αi and βi thus defined give us the random variable X̃ (defined via (11)) that satisfies

(13). To see this, we check first that

φX̃m
(z) =

m∏
i=1

(1 + z/βi)
−αi = exp

(
−
∫ z

0

ψ∗m(w − z∗)dw
)
. (20)

By construction, ψ∗m(0) = ψ∗(0) and the function w 7→ ψ∗m(w− z∗) has the first 2m− 1 derivatives at z∗

equal to the corresponding derivatives of ψ∗(z − z∗). Since

ψ∗(z) = − d

dz
ln(φX(z + z∗)), ψ∗m(z) = − d

dz
ln(φX̃(z + z∗))
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we conclude that the first 2m derivatives of φX̃(z) at z∗ (as defined in (20)) are equal to the corresponding

2m derivatives of φX(z) at z∗, and this is equivalent to the moment condition (13).

Let us now prove uniqueness of coefficients αi and βi. Assume that we have found numbers αi > 0

and βi > 0 such that (13) holds. But then, the first 2m derivatives of φX̃(z) at z = z∗ are equal to

the corresponding 2m derivatives of φX(z) at z∗. Reversing the above argument, we conclude that the

rational function − d
dz
φX̃(z + z∗) is the [m− 1/m] Padé approximation to ψ∗(z). Thus the uniqueness of

this Padé approximation implies the uniqueness (up to permutation) of the coefficients αi and βi. ut

Proof of Theorem 2. We recall from the above proof of Theorem 1 that the function ψ∗m(z) is the [m−
1/m] Padé approximation to Stieltjes function ψ∗(z). Theorem 5.4.4 in Baker and Graves-Morris (1996)

states that ψ∗m(z)→ ψ∗(z) as m→ +∞, exponentially fast on compact subsets of C \ (−∞,−z∗]. This

fact implies that as m→ +∞ the functions φX̃(z) (defined by (20)) converge to

φ(z) = exp

(
−
∫ z

0

ψ∗(w − z∗)dw
)

exponentially fast on compact subsets of C \ (−∞, 0]. ut

3 The numerical basis for the proposed method

In this section we show how to find the (m, z∗)-approximant to any GGC random variable X with

a known p.d.f. fX(x). Our goal is to compute the unique coefficients αi = αi(m) and βi = βi(m),

i = 1, 2, . . . ,m, whose existence is guaranteed by Theorem 1. We recall that these coefficients give us

the (m, z∗)-approximant in the form X̃ =
∑m

i=1 Γi, where Γi ∼ Ga(αi, βi) are independent r.v.’s.

In the next subsection we present the algorithm, and later we explain why it works and how one

could implement it.

3.1 The algorithm for computing αi and βi

We organize the algorithm in four steps, so that each step is simple and self-contained and uses only the

results of computations from the previous step. These four steps are given below:

Step 1: For k = 0, 1, . . . , 2m, we compute numerically the following integrals

gk := (−1)k
∫ ∞
0

xke−z
∗xfX(x)dx. (21)
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Step 2: We set s0 = −g1/g0 and then, for k = 1, 2, . . . , 2m− 1, we compute recursively

sk = − 1

g0

(
gk+1

k!
+

k−1∑
i=0

si
gk−i

(k − i)!

)
. (22)

Step 3: We solve the m×m system of linear equations

s0 s1 s2 · · · sm−1

s1 s2 s3 · · · sm

s2 s3 s4 · · · sm+1

...
...

...
. . .

...

sm−1 sm sm+1 · · · s2m−2





bm

bm−1

bm−2
...

b1


= −



sm

sm+1

sm+2

...

s2m−1


(23)

to find bi, 1 ≤ i ≤ m. Then we set a0 = s0 and compute

ak = sk +
k∑
i=1

bisk−i (24)

for k = 1, 2, . . . ,m− 1.

Step 4: We define polynomials Q(z) := 1 + b1z + b2z
2 + · · ·+ bmz

m and P (z) := a0 + a1z + a2z
2 + · · ·+

am−1z
m−1 and compute {zi}1≤i≤m, which are the zeroes of the polynomial Q(z) (it is known that these

zeroes are all real, simple and lie in (−∞,−z∗)). The desired coefficients αi and βi are given by

βi = −zi − z∗ and αi =
P (zi)

Q′(zi)
(25)

for i = 1, 2, . . . ,m.

3.2 Why does this algorithm work?

The algorithm presented in Section 3.1 aims to compute the [m − 1/m] Padé approximation (centered

at z = 0) to the Stieltjes function ψ∗(z), that we introduced in the Proof of Theorem 1. We recall that

ψ∗(z) = −d/dz[ln(φX(z + z∗))], where φX(z) = E[exp(−zX)]. To find the Padé approximation, we need

to know the Taylor coefficients of ψ∗(z), which we defined as sk (see (16)). The goal of Steps 1 and 2 of

our algorithm is to compute these coefficients. We start with computing the coefficients gk, defined by

(21). Note that gk = φ
(k)
X (z∗). Taking the identity φ′X(z + z∗) = −ψ∗(z)φX(z + z∗), rewriting it in an

equivalent form ∑
k≥0

gk+1z
k/k! = −

(∑
m≥0

smz
m

)
×

(∑
k≥0

gkz
k/k!

)
.

and comparing the coefficients in front of zk we obtain recursive identity (22) for computing sk.
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Once we have sk, we can compute the Padé approximation, and this is done by solving the system

of linear equations (23). This is a well-known method for finding Padé approximations (e.g. Baker and

Graves-Morris, 1996). An interested reader may also derive the system of equations (23) by rewriting

condition (18) in the form

(a0 +a1z+a2z
2 + · · ·+am−1z

m−1)−

(∑
m≥0

smz
m

)
(1+b1z+b2z

2 + · · ·+bmz
m) = O(z2m) for z → 0. (26)

and comparing the coefficients of zk for m ≤ k ≤ 2m − 1. Formulas (24) then follow by comparing the

coefficients of zk for 0 ≤ k ≤ m− 1 in (26).

The last step of the algorithm computes the coefficients αi and βi from the Padé approximant

P (z)/Q(z), see the end of the proof of Theorem 1.

3.3 How to implement this algorithm?

While the algorithm is quite straightforward, there is one difficulty in that it requires high-precision

arithmetic. High precision is needed in Step 2, as the numbers gk grow very fast in absolute value and

have alternating sign, thus (22) leads to subtracting large numbers and the inevitable loss of precision.

High-precision arithmetic is also needed in Step 3, when solving the system of linear equations, as

the matrix may be ill-conditioned, and, of course, it is absolutely necessary in Step 4, when finding

numerically the roots of the polynomial Q(z).

To facilitate the applications of our algorithm, we have precomputed the coefficients αi and βi for

all values of σ ∈ {0.05, 0.06, . . . , 2.99, 3}, approximation orders m ∈ {10, 20, 30, 40}, and z∗ = 1; these

can be downloaded at www.math.yorku.ca/~akuznets/math.html. In addition, a copy of the Fortran90

code that we used to compute these coefficients is available upon request.

Now we briefly state the main ideas of implementation of our algorithm. For working with high

precision numbers we used a Fortran-90 arbitrary precision package MPFUN90. In our computations we

found that working precision of between 300 to 500 digits was enough for most of examples, though in

some cases when σ and m were large, we used 700 digits. The main issue in implementing our algorithm

from Section 3.1 lies in computing accurately the coefficients gk in Step 1, as these are the basis for all

further computations in Steps 3-4. To compute these numbers accurately and efficiently, we used the

double-exponential quadrature of Takahasi and Mori (1974). The idea behind this quadrature is that

we perform a change of variables x = u(y) = exp(y − exp(−y)), y ∈ (−∞, ∞), and approximate the

resulting integral by a Riemann sum

Ih := h
∞∑

l=−∞

u(lh)ke−z
∗u(lh)fX(u(lh))(1 + e−lh)u(lh).

11

www.math.yorku.ca/~akuznets/math.html


For smooth enough functions fX(x), the rate of convergence of Ih to gk is very fast (as h → 0+). For

example, when we take fX to be a log-normal p.d.f. with µ = 0 and σ = 0.5, we find that taking

h = 0.008 and truncating the above infinite series to the range −1000 < l < 1000 allows us to compute

the first forty coefficients gk with accuracy better than 1.0e− 300.

Once the coefficients gk are computed, Steps 2 and 3 are quite simple. For Step 4, where we needed

to find the roots of Q(z), we used Newton’s method. This is appropriate, since we know that all roots

of Q(z) are real.

3.4 How to choose z∗?

At the outset, recall that the algorithm sketched in Section 3 has two free parameters, which are m ∈ N
and z∗ > 0. The former parameter has a simple intuitive interpretation, that is larger values of m

yield more accurate approximations. The impact of the latter parameter is harder to describe. We have

run several numerical experiments in this respect, computing the maximum absolute difference between

the approximating and explicit c.d.f.’s for a large range of values of z∗ > 0, and our conclusions are

that the choice of z∗ does not seem to affect the accuracy of the approximation, unless extremely large

or extremely small values are employed. For example, when considering the (m, z∗)-approximant L̃ of

L ∼ LN(0.832) and comparing their c.d.f’s, we found that the best accuracy was typically achieved

for z∗ ∈ [0.3, 5], and the error does not change significantly for the values of z∗ in this interval. At

the same time, for any c > 0, one can show that the (m, z∗/c)-approximant X̃ of the r.v. cX has the

same distribution as c times the (m, z∗)-approximant of the r.v. X, thus the good choice of z∗ should

be rescaled as z∗ 7→ z∗/c when we scale the random variable X 7→ cX. We feel that the choice of

z∗ = 1/E[X] is reasonable, however in all numerical examples in this paper we simply took z∗ = 1.

4 Performance of the approximation algorithm

4.1 Example 1: approximating a single log-normal random variable

We briefly elucidate the accuracy of the approximation algorithm in the case of a single log-normally

distributed r.v. L ∼ LN(0.83). A few notes are instrumental at the moment. First, the value of the

shape parameter σ = 0.83 has been chosen in line with the empirical evidence reported in O’Neill and

Wells (1972) in the context of the collision claim payments involving 30 – 40 year old drivers. Second,

starting off with the approximation of a single log-normally distributed r.v. allows us to use its c.d.f. as

a benchmark of the appropriateness of our approximation (in the case of the sum SN , we have no explicit

expressions to compare to). Last but not least, as we have already emphasized, the choice of the location

and scale parameters being equal to 0 and 1, respectively is made for convenience only, and the inclusion

12



x = 0.85 x = 0.9 x = 0.91 x = 0.92

m = 2 3.01701656990E-008 1.63177011549E-004 5.95571826199E-004 1.91150135288E-003

m = 4 3.00610295544E-008 1.63142901323E-004 5.95527541587E-004 1.91148724440E-003

m = 6 3.00610413228E-008 1.63142901488E-004 5.95527541680E-004 1.91148724406E-003

m = 8 3.00610124570E-008 1.63142901459E-004 5.95527541661E-004 1.91148724404E-003

F̃ (16x) 3.031E-008 1.632E-004 5.956E-004 1.912E-003

Table 1: Approximating the c.d.f. P(S16 ≤ 16x), where S16 is the sum of sixteen independent and

identicallly log-normally distributed r.v.’s with σ = 0.125. We denote by F̃ (16x) the results from

Asmussen et al. (2016b)[Table 1].

of the general three parameter log-normal distribution (e.g., O’Neill and Wells, 1972) is straightforward.

We set z∗ = 1 and evoke the approximation algorithm with m ∈ {10, 20, 30, 40} and then compute

the c.d.f. of the respective approximant r.v.’s via the inversion of the corresponding approximating

Laplace transforms (see, Appendix A) (e.g., Hürlimann, 2001, for an alternative approach). We choose

large number of discretization points when computing the inverse Laplace transforms and ensure that

the errors from this step are less than 1.0e − 12 (to ensure that the errors are less than 1.0e − 12 we

increase the number of discretization points even further and check that the change in the results is less

than 1.0e − 12). Then we compare the approximating c.d.f.’s with the explicit c.d.f. The outcomes are

depicted in Figure 1. Remarkably, the figure suggests that the approximation error in the right tail is

only visible for m = 10, and the approximating c.d.f.’s are not visually distinguishable from the original

c.d.f. even for this small value of m.

4.2 Example 2: approximating a sum of 16 log-normal random variables

Next, we consider a numerical example from Asmussen et al. (2016b). The goal is to compute the c.d.f

of the sum S16 = L1 + L2 + · · · + L16, where Li are i.i.d. random variables distributed log-normally

with σ = 0.125. The results are presented in Table 1. We see that our approximations converge very

rapidly, and with m = 8 we obtain accuracy of at least 10−12. For comparison, in the last row we present

the results from Asmussen et al. (2016b). These results were compared in Asmussen et al. (2016b) with

Monte Carlo approximations, and were found to have relative error of about 1%.

We repeat the above example, but for the right tail and for a larger value of σ = 1.5. The results are

presented in Table 2. Our approximations still converge, but at a somewhat slower rate. That said, the

obtained approximated c.d.f.’s are still quite accurate, as is seen from the comparison with the Monte

13
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Figure 1: Whenever it applies, the colours: green, blue, red, and black correspond to the approximations

of order m = 10, 20, 30, and 40, respectively. (a) The c.d.f. F of L ∼ LN(0.83) compared with the

c.d.f.’s FL̃ of the approximant r.v.’s L̃. (b) The errors F (x)−FL̃(x) in the left tail. (c) Same as in panel

(b) but omitting the m = 10 (green) approximation. (d) The errors F (x)− FL̃(x) in the right tail.
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x = 12 x = 25 x = 40 x = 60

m = 10 0.99283646 0.99967148 0.99998468 0.99999968

m = 20 0.99216586 0.99925807 0.99985210 0.99997206

m = 30 0.99214659 0.99923867 0.99983322 0.99995759

m = 40 0.99214492 0.99923699 0.99983154 0.99995591

F̂ (x) 0.99214 0.99924 0.99983 0.99995

Table 2: Approximating the c.d.f. P(S16 ≤ 16x), where S16 is the sum of sixteen independent and

identically log-normally distributed r.v.’s with σ = 1.5. We denote by F̂ (16x) the Monte Carlo estimate

based on a sample of size 109.

Carlo - based approximations (last raw of Table 2).

5 Aggregate economic capital determination and allocation:

Individual Risk Model

We have already mentioned that the c.d.f. of a sum, random or not, of independent and log-normally

distributed r.v.’s can be approximated with the help of Theorem 1 via Equation (8). Remarkably, risk

measures (3) and (4), as well as the allocation rules based on them, can be approximated in a very

similar fashion. Speaking briefly, the reason for this lies in the connection between the aforementioned

risk measures and allocations and the notion of the size-biased distributions (Patil and Rao, 1978), which

are briefly introduced next.

Let X be a positive r.v., then for l ∈ N, such that E[X l] < +∞, the size-biased r.v. of order l is

denoted by X∗(l) and defined via the distribution function

P
(
X∗(l) ∈ dx

)
=

xl

E[X l]
P (X ∈ dx) for x ≥ 0 (27)

(e.g., Patil and Rao, 1978). For l = 1, we simplify the notation and write X∗, FX∗ , and φX∗ for the

size-biased variant of X, its c.d.f., and Laplace transform.

When both the original and the size-biased c.d.f.’s belong to the same family of c.d.f.’s, we say

that the distribution is closed under size-biasing of order l ∈ N. It is not difficult to see that the log-

normal distribution is closed under size-biasing of order one (Patil and Rao, 1978), and consequently the

expression for the CTE risk measure for the r.v. L is, for q ∈ [0, 1),

CTEq[L] = E [L| L > VaRq[L]] =
E[L]

1− q
P [L∗ > VaRq[L]] ,
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(Furman and Zitikis, 2008b), where L∗ ∼ LN(σ2, σ2) and, if needed, Equation (8) can be evoked.

More generally, it can be shown that the log-normal distribution is closed under size-biasing of

any order, and so risk measure (4), as well as other ones based on higher order moments, are trivial

to compute for the r.v. L. That said, computing expressions for risk measures (3) and (4) for the

aggregate r.v. Sn, n ∈ N is substantially more involved, and has to deal with the size-biasing of the

r.v. Sn =
∑n

i=1 Li, Li ∼ LN(σ2
i ). This is achieved in the next theorem, which shows that the Laplace

transform of the l-th order size-biased variant of the r.v. Sn can be spelled out in terms of the Laplace

transforms of the summands L1, . . . , Ln. As a result approximations akin to (8) are feasible.

We note at the outset that the Laplace transform of the size-biased r.v. X∗(l), such that E[X l] < +∞,

is given by

φX∗(l)(z) := E[exp(−zX∗(l))] =
E[X le−zX ]

E[X l]
for Re(z) ≥ 0, l ∈ N. (28)

The next theorem allows to reduce the problem of computing the c.d.f. of the r.v. Sn to a remarkably

more tractable set-up of finite sums of independent gamma distributed r.v.’s.

Theorem 3. Let L ∼ LN(σ2), σ > 0 be a log-normally distributed r.v. with the corresponding Laplace

transform φL. Also, let Lj ∼ LN(σj) be mutually independent and log-normally distributed r.v.’s with

shape parameters σj > 0 and the corresponding Laplace transforms φLj
, j = 1, . . . , n. Finally, let

Sn =
∑n

j=1 Lj as before. Then the following assertions hold:

(1) For any l ∈ N and c = exp(lσ2), we have

φL∗(l)(z) = φcL (z) for Re(z) ≥ 0. (29)

(2) For any l ∈ N and cj = exp(djσ
2
j ), j = 1, . . . , n, we have that the Laplace transform of the size-

biased variant of order l of the sum Sn is the following weighted average of Laplace transforms

φ
S
∗(l)
n

(z) =
1

E[Sl]

∑
d1+···+dn=l

(
l

d1, . . . , dn

) n∏
j=1

E
[
L
dj
j

]
φc1L1+···+cnLn(z) for Re(z) ≥ 0. (30)

Proof. It is not difficult to check that, for l ∈ N, we have L
∗(l)
j ∼ LN(lσ2, σ2), which proves (29). To
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confirm (30), we have the following string of equations

φ
S
∗(l)
n

(z) =
E[Slne

−zSn ]

E[Sln]
=

1

E[Sln]
E

( n∑
j=1

Lj

)l

e−zSn


=

1

E[Sln]

∑
d1+···+dn=l

(
l

d1, . . . , dn

)
E

[
n∏
j=1

L
dj
j e
−zLj

]

=
1

E[Sln]

∑
d1+···+dn=l

(
l

d1, . . . , dn

) n∏
j=1

E
[
L
dj
j

] n∏
j=1

E
[
L
dj
j e
−zLj

]
E[L

dj
j ]

=
1

E[Sln]

∑
d1+···+dn=l

(
l

d1, . . . , dn

) n∏
j=1

E
[
L
dj
j

]
φ
L
∗(d1)
1 +···+L∗(dn)

n
(z)

=
1

E[Sln]

∑
d1+···+dn=l

(
l

d1, . . . , dn

) n∏
j=1

E
[
L
dj
j

]
φc1L1+···+cnLn(z),

which completes the proof. ut

Theorem 3 implies that, for any l ∈ N, we can approximate the Laplace transforms of the p.d.f.’s of

the r.v.’s L
∗(l)
j and S

∗(l)
n using Theorem 1, and this is precisely what we need latter on in this section.

We note in passing that a particularly simple special case of (30) occurs for l = 1. Then we readily have,

for cj = exp(σ2
j ),

φS∗n(z) =
n∑
j=1

E[Lj]

E[Sn]
φcjLj+

∑n
i=1,i 6=j Li

(z) for Re(z) ≥ 0 (31)

(e.g., Furman and Landsman, 2005, Proposition 1).

In the rest of this section we aim at answering the following question: how much Economic Capital

(EC) is required to support the risk Sn? To this end, let H : X → [0,∞] denote a regulatory risk

measure that maps risk r.v.’s in the set of actuarial risks X to EC’s in the extended non-negative half-

line. Nowadays the determination of the aggregate EC - H[SN ] - is a compulsory task for insurers (e.g.,

Solvency II, Swiss Solvency Test). One of the most popular risk measures employed for this purpose is

the conditional tail expectation

CTEq[Sn] = E[Sn| Sn > VaRq[Sn]] for Sn with finite mean, (32)

where VaRq[Sn] is the Value-at-Risk, and q ∈ [0, 1) is the prudence parameter set by the regulations.

We note in passing that, for risk r.v.’s with continuous c.d.f.’s, the CTE risk measure coincides with the

Expected Shortfall (ES) risk measure, and so it is coherent in the sense of Artzner et al. (1999) (also,

Hürlimann, 2003; McNeil et al., 2005, Lemma 2.16), and belongs to the class of distorted (Wang, 1996)

and weighted (Furman and Zitikis, 2008b) risk measures.
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If the variability along the right tail is of a concern, the modified Tail Variance (mTV) risk measure of

Furman and Landsman (2006) may become useful (also, Jiang et al., 2016, for a recent application). The

mTV takes into account both the magnitude and the variability of the tail risk, and for the aggregate

risk Sn it is defined as

mTVq[Sn] = E[Sn| Sn > VaRq[Sn]] +
Var[Sn| Sn > VaRq[Sn]

E[Sn| Sn > VaRq[Sn]]
for Sn with finite variance, (33)

where q ∈ [0, 1) is the prudence parameter.

Our ultimate goal is to approximate (32) and (33). To this end, we choose n = 3 and assume that the

summands of Sn represent log-normally distributed risks due to three business lines of an insurer. We

then derive the desired approximations using the algorithm described in Section 3 with m = 20. Since

the order of the approximation does not vary any more, we use the “tilde” notation with no subscripts

for all the approximating quantities below.

Let pi = exp(σ2
i /2), i = 1, . . . , n, and p+ =

∑n
i=1 pi. Also, note that, for Sn denoting a sum of

independent r.v.’s, we have

E[Sln1{Sn > s}] = E[Sln]
(

1− F
S
∗(l)
n

(s)
)
, s ≥ 0, (34)

where all the involved quantities are assumed well-defined and finite.

Example 1. We start with the general IRM, that is the r.v. Sn, with log-normally distributed summands.

Let e(s) := E[Sn1{Sn > s}], s ≥ 0. Then, using Equations (34) and (8), we have

e(s) = E[Sn]L−1
{

1− φS∗n(z)

z

}
(s) for s ≥ 0. (35)

Consequently, for q ∈ [0, 1), we obtain with the help of Theorem 3,

CTEq[Sn] =
p+

1− q
L−1

{
1− φS∗n(z)

z

}
(VaRq[Sn])

=
p+

1− q
L−1

{
1

z

(
1−

n∑
i=1

pi
p+
φciLi+

∑n
j=1,j 6=i Lj

(z)

)}
(VaRq[Sn]).

Therefore, for n = 3, ci = exp(σ2
i ), and q ∈ [0, 1), we have the following approximation

CTEq[S3] ≈
p+

1− q
L−1

{
1

z

(
1−

3∑
i=1

pi
p+
φciL̃i+

∑3
j=1,j 6=i L̃j

(z)

)}
(VaRq[S̃3]), (36)

where L̃i and S̃3 are obtained with the help of Theorem 1. This establishes the desired approximation.

To illustrate, assume that the r.v.’s L1, L2 and L3 are distributed LN(0.83). We depict (36) as well

as the CTE of the comonotonic sum Sc3 := 3L0.83 in Figure 2a. We note in passing that the two are
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Figure 2: (a) Degreem = 20 approximations CTEq[S̃c3] (green) and CTEq[S̃3] (blue), σ1 = σ2 = σ3 = 0.83.

(b) The absolute errors between CTEq[S3] as computed by numerical integration and: (i) CTEq[S̃3] (dark

green); (ii) the average of 50 MC derived values of CTEq[S3] (red) (c) CTEq[S̃3] (blue line) compared to

the maximum and minimum of CTEq[S3] computed using 50 MC simulations. (d) A close-up of (c) at

one point. All simulations are generated using 106 random samples.
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the lower and the upper bounds, respectively, in the Fréchet set of all joint c.d.f.’s with fixed LN(0.83)

margins and varying positive cumulative dependence (Denuit et al., 2001). We compare our approach

with the outcomes due to the Monte Carlo (MC) simulation method (50 MC simulations with 106 random

samples) in Figure 2b (see, also, Figures 2c). This completes Example 1.

In the next example we generalize Example 1 by considering (i) log-normally distributed risks that

are not identically distributed, and (ii) a risk measure that quantifies the variability of the tail risk.

Example 2. As before, we start by considering the aggregate r.v. within the IRM framework with

log-normally distributed constituents. Let e2(s) := E[S2
n1{Sn > s}], s ≥ 0, then by (34) and (8), we

readily obtain

e2(s) = E[S2
n](1− F

S
∗(2)
n

(s)) = E[S2
n]L−1

{
1− φ

S
∗(2)
n

(z)

z

}
(s) for s ≥ 0. (37)

Hence, for q ∈ [0, 1), we have

E[S2
n| Sn > VaRq[Sn]] =

E[S2
n]

1− q
L−1

{
1− φ

S
∗(2)
n

(z)

z

}
(VaRq[Sn]),

which can be simplified further using Theorem 3. Indeed for the special case of interest herein, that

is, for n = 3, S3 = L1 + L2 + L3, where L1, L2 and L3 are independent but not necessarily identically

log-normally distributed risks, we have

E[S2
3 ]φ

S
∗(2)
3

(z) = E[L2
1]φc1L1+L2+L3(z) + E[L2

2]φL1+c2L2+L3(z) + E[L2
3]φL1+L2+c3L3(z)

+ 2E[L1]E[L2]φc1L1+c2L2+L3(z) + 2E[L1]E[L3]φc1L1+L2+c3L3(z)

+ 2E[L2]E[L3]φL1+c2L2+c3L3(z) for Re(z) ≥ 0,

which is formulated in terms of the Laplace transforms of log-normal convolutions, and thus can be

approximated with the help of Theorem 1. Bearing this, as well as (36), in mind, we immediately obtain

the approximation for the mTV risk measure.

Set σ1 = 0.81, σ2 = 0.83, and σ3 = 0.85 (these choices of parameters are motivated by the empirical

findings in O’Neill and Wells (1972)). The approximations VaRq[S̃3], CTEq[S̃3], and mTVq[S̃3] are

presented in Figures 3a, 4a, and 4e, respectively. In Figures 3b and 4b we compute the absolute errors

between the just-mentioned approximating risk measures and those computed with the help of the MC

approach (average of 50 MC simulated values of VaR, CTE, and mTV, each generated with 106 random

samples). This completes Example 2.
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Figure 3: (a) Degree m = 20 approximation VaRq[S̃3], where σ1 = 0.81, σ2 = 0.83 and σ3 = 0.85.

(b) Absolute error between VaRq[S̃3] and the average of 50 MC simulations of VaRq[S3]. (c) Relative

absolute error between VaRq[S̃3] and the average of 50 MC simulations of VaRq[S3]. (d) VaRq[S̃3] (blue

line) compared to the maximum and minimum of VaRq[S3] computed using 50 MC simulations. (e) A

close-up of (d) at one point. All simulations are generated using 106 random samples.
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Figure 4: (a) Degree m = 20 approximation CTEq[S̃3], where σ1 = 0.81, σ2 = 0.83 and σ3 = 0.85. (b)

Absolute error between CTEq[S̃3] and the average of 50 MC simulations of CTEq[S3]. (c) CTEq[S̃3] (blue

line) compared to the maximum and minimum of CTEq[S3] computed using 50 MC simulations. (d) A

close-up of (c) at one point. (e) Degree m = 20 approximation mTVq[S̃3] where σ1 = 0.81, σ2 = 0.83

and σ3 = 0.85. All simulations are generated using 106 random samples.
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Given that the aggregate EC H[Sn] has been determined, a somewhat more involved problem is the

allocation of this EC to constituents. Namely, it is often of interest to assess the risk contribution of

each summand in Sn = X1 + · · ·+Xn to H[Sn]. More formally, the allocation rule A : X × X → [0,∞]

such that A[X,X] = H[X] for X ∈ X assigns a finite (or infinite) value of the allocated EC to random

pairs (X,S) (e.g., Denault, 2001; Furman and Zitikis, 2008a). One goal of the allocation exercise is

profitability testing, others are cost sharing and pricing (e.g., Venter, 2004).

Clearly, there are infinitely many ways to allocate the aggregate EC, and the literature on the allo-

cation rules is vast and growing rapidly (e.g., Dhaene et al., 2012, and references therein). In this paper

we work with the allocation counterparts of risk measures (32) and (33), which are, respectively,

CTEq[Xi, Sn] = E[Xi| Sn > VaRq[Sn]], (38)

and

mTCoVq[Xi, Sn] := E[Xi| Sn > VaRq[Sn]] +
Cov[Xi, Sn| Sn > VaRq[Sn]

E[Sn| Sn > VaRq[Sn]]
, (39)

where i = 1, . . . , n, q ∈ [0, 1), and we assume that all the involved quantitites are well-defined and finite.

Obviously, we have CTEq[Sn, Sn] = CTEq[Sn] and mTCoVq[Sn, Sn] = mTVq[Sn] for i = 1, . . . , n, q ∈
[0, 1), and allocation rules (38) and (39) are fully additive. Moreover, these allocation rules are ‘weighted’

(Furman and Zitikis, 2008a), and they are optimal in the sense of Dhaene et al. (2012).

We are now ready to delve into the approximation of allocation rules (38) and (39). Beforehand, let

Sn,−j := Sn −Xj, j = 1, . . . , n, then, for non-negative constants l and k, we have

E[X l
jS

k
n,−j1{Sn > s}] = E[X l

j]E[Sln,j]
(

1− F
S
∗(k)
n,−j+X

∗(l)
j

(s)
)
, s ≥ 0, (40)

where we assume that all the involved quantities are well-defined and finite.

Example 3. As in all previous examples, we consider a general IRM with log-normally distributed

standalone risks first, and we specialize thereafter. Let h0(s) := E[Lj1{Sn > s}], s ≥ 0, then we have,

with the help of Equations (40) and (8),

h0(s) = E[Lj]L−1
{

1

z

(
1− φSn−Lj+L∗j

(z)
)}

(s) for s ≥ 0. (41)

This implies immediately, for q ∈ [0, 1) and cj = exp(σ2
j ),

CTEq[Lj, Sn] =
E[Lj]

1− q
L−1

{
1

z

(
1− φ∑n

i=1, i6=j Li+cjLj
(z)
)}

(VaRq[Sn]).

Further, set n = 3, then

CTEq[Lj, S3] ≈
E[Lj]

1− q
L−1

{
1

z

(
1− φ∑3

i=1, i6=j L̃i+cjL̃j
(z)
)}

(VaRq[S̃3]), , (42)
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which is computed evoking Theorem 1.

In order to approximate the modified Tail Covariance allocation rule, we recall the following trivial

equation

Cov[Xj, Sn| Sn > VaRq[Sn]] = E[XjSn| Sn > VaRq[Sn]]

− E[Xj| Sn > VaRq[Sn]]× E[Sn| Sn > VaRq[Sn]] for q ∈ [0, 1),

where we assume that all the involved quantities are well-defined and finite. The product of expectations

can be computed as in Example 1, hence, we only need to approximate the mixed expectation. To this

end, let h(s) := E[LjSn1{Sn > s}], s ≥ 0, and note with the help of Equations (40) and (8) that

h(s) = E[Lj]E[Sn,−j]L−1
{

1

z

(
1− φS∗n,−j+L

∗
j
(z)
)}

(s)

+ E[L2
j ]L−1

{
1

z

(
1− φ

Sn,−j+L
∗(2)
j

(z)
)}

(s),

where Sn,−j =
∑n

i=1, i6=j Li. This can be simplified with the help of Theorem 3, and in particular, for

n = 3, cj as before, and s ≥ 0,

h(s) = E[Lj]E[S3,−j]L−1
{

1

z

(
1−

3∑
i=1, i6=j

E[Li]

E[S3,−j]
φcjLj+ciLi+

∑3
k=1, k 6=i,j Lk

(z)

)}
(s)

+ E[L2
j ]L−1

{
1

z

(
1− φS3,−j+c2jLj

(z)
)}

(s),

which implies, for cj = exp(σ2
j ) and q ∈ [0, 1),

E[LjS3| S3 > VaRq[S3]] (43)

=
E[Lj]E[S3,−j]

1− q
L−1

{
1

z

(
1−

3∑
i=1, i6=j

E[Li]

E[S3,−j]
φcjLj+ciLi+

∑3
k=1, k 6=i,j Lk

(z)

)}
(VaRq[S3])

+
E[L2

j ]

1− q
L−1

{
1

z

(
1− φS3,−j+c2jLj

(z)
)}

(VaRq[S3])

≈ E[Lj]E[S3,−j]

1− q
L−1

{
1

z

(
1−

3∑
i=1, i6=j

E[Li]

E[S3,−j]
φcjL̃j+ciL̃i+

∑3
k=1, k 6=i,j L̃k

(z)

)}
(VaRq[S̃3])

+
E[L2

j ]

1− q
L−1

{
1

z

(
1− φS̃3,−j+c2j L̃j

(z)
)}

(VaRq[S̃3]),

which establishes the approximation of the conditional covariance, and can be computed using Theorem

1. The desired approximation of the modified Tail Covariance follows readily.

For visualization purposes, we again set σ1 = 0.81, σ2 = 0.83 and σ3 = 0.85, then the approximating

allocation rules based on the CTE and the modified Tail Covariance risk measures are depicted in Figures

5 and 6. This completes Example 3.
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Figure 5: Degree m = 20 approximations of the allocations (a) CTEq[L1, S3] (b) CTEq[L2, S3] and (c)

CTEq[L3, S3], where L1 ∼ LN(0, 81), L2 ∼ LN(0, 83), and L3 ∼ LN(0, 85).
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Figure 6: Degree m = 20 approximations of the allocations (a) mTCovq[L1, S3] (b) mTCovq[L2, S3] (c)

mTCovq[L3, S3], where L1 ∼ LN(0, 81), L2 ∼ LN(0, 83), and L3 ∼ LN(0, 85).
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6 Aggregate economic capital determination: collective risk

model

In this section we assume that N is a discrete r.v., and so SN = L1 + · · ·+ LN is a collective risk model

with all of L1, L2, . . . independent mutually and on N , as well as identically distributed as a canonical

r.v. L ∼ LN(σ2), σ > 0. Let GN(z) = E[zN ] denote the p.g.f. of the r.v. N for all z ∈ (−∞, ∞) such

that the p.g.f. is well-defined and finite.

In principle, once we have fixed the distributions of the r.v.’s L and N , we may proceed exactly as

before and approximate the Laplace transform of SN with the help of Theorem 1. This is clear from

φSN
(z) = GN(φL(z)) ≈ GN(φL̃(z)), Re(z) ≥ 0.

However, we must make a slight adjustment when computing the c.d.f FSN
since the measure µ(dx) :=

P(SN ∈ dx) may have an atom at zero, and consequently FSN
may be discontinuous there. We find that

better numerical results are achieved if we remove this atom.

More specifically, let µ({0}) = p0 ∈ (0, 1). The measure µ0(dx) := µ(dx) − p0δ0(dx) is absolutely

continuous with respect to the Lebesgue measure. It is easy to see that F0(x) := µ0([0, x]) has Laplace

transform φ0(z) := (φSN
(z)− p0)/z, Re(z) ≥ 0. Therefore, we can use

FSN
(x) = p0 + L−1 {φ0(z)} (x)

for the values of x near zero, and we revert to the methods in our preliminary examples otherwise.

Example 4. Let N be distributed Poisson with the unit rate parameter, and let SN = L1 + L2 + · · · ,
where L1, L2, . . . are mutually independent, independent of N , and such that σ1 = σ2 = · · · = 0.83. For

this special r.v. N , we have p0 = exp(−1). The graph of the approximation FS̃N
(x) is shown in Figure

7. Also shown therein is VaRq[S̃N ], which can be computed as the inverse of FS̃N
(x) as before. Of course

in this case we have VaRq[SN] = 0 for q ≤ exp(−1). Using these results, we also compute CTEq[S̃N ] and

mTVq[S̃N ], which are depicted in Figure 8. This completes Example 4.

7 Computation time

In this section we provide the computation time needed to compute the quantities of interest in the

previous sections. These computation times are presented in Table 3.

All calculations were carried out on a desktop computer with 32GB of memory and an Intel i7-2600K

3.40GHz CPU. Times shown are measured in seconds. These represent the number of seconds required
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Figure 7: Degree m = 20 approximations (a) FS̃N
(x) and (b) VaRq[S̃N ].
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Figure 8: Degree m = 20 approximations (a) CTEq[S̃N ] and (b) mTVq[S̃N ].
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Approximation of the quantity Pre-Comp. Integ. W/O Pre-Comp. Integ. 106 MC 107 MC

VaR0.5[S3] 0 N/A 0 0

CTE0.5[S3] 0.56 7.41 0.35 3.46

mTV0.5[S3] 1.06 211.83 0.36 3.46

CTE0.5[L1, S3] 0.92 6.38 0.36 3.53

mTCov0.5[L1, S3] 3.25 43.67 0.35 3.45

Table 3: Computation times for various quantities of interest in the paper, for S3 = L1 +L2 +L3, where

L1 ∼ LN(0.81), L2 ∼ LN(0.83), and L3 ∼ LN(0.85).

to compute one value of the approximation of the quantity listed in the left-most column by the method

listed in the top-most row. None of the times include the time required to compute the coefficients of

the approximation – these were pre-computed and stored on hard drive (the coefficients are available

for download at www.math.yorku.ca/~akuznets/math.html for a range of values of σ ∈ (0, 3) and

for m ∈ {10, 20, 30, 40}). The column “Pre-Comp. Integ.” shows the timings for when we have pre-

computed and stored the integrands for the various Laplace inversions we have to do. Pre-computing

these integrands takes a rather long time (due to the fact that we use a large number of discretization

points in the inverse Laplace transform – see Appendix A), and if we compute multiple quantities of

interest - and this is the case herein - it is more efficient to pre-compute these integrands and store them

rather then compute them every time. For a comparison, the column “W/O Pre-Comp. Inteq.” shows

the computation time that includes the time used to build the integrands. The two columns on the right

show the time taken by the Monte Carlo method.

8 Concluding discussion

Convolutions of log-normally distributed r.v.’s play a prominent role in actuarial science, and well-

beyond it. Nevertheless, the existing methods, which as a rule hinge on either one of (i) the moment

matching technique, (ii) series expansion of the Laplace transform, and (iii) asymptotic analysis, may

deliver inaccurate results. Rather unfortunately, the just-mentioned inaccuracies exacerbate when, e.g.,

the intermediate tail (also tail) risk is of interest, and this is precisely the phenomenon that concerns the

modern insurance regulation the most. In this paper we have proposed a hybrid approach to resolving

29

www.math.yorku.ca/~akuznets/math.html


the problem. More specifically, we have shown that it is possible to approximate the distribution of

the sum of independent and log-normally distributed r.v.’s with the help of the distribution of certain

m-fold gamma convolutions in such a way that, for m → +∞, the approximating distribution is equal

to the distribution of the desired sum. We then have utilized the class of Padé approximations to find

the parameters of the approximating distribution.

Remarkably, the algorithm that arises from our method is fairly fast, accurate, and, last but not

least, very versatile. We have discussed the two former advantages earlier in the paper. For the latter

advantage, we note that our approach can be used to approximate the c.d.f. of the aggregate r.v.

Sn = X1 + · · ·+Xn, where the summand r.v.’s Xj, j = 1, . . . , n can have any - not necessarily common -

distributions in the class of GGC’s (Miles et al., 2019, for a non-technical follow-up paper with examples)
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Appendix A Numerical inversion of Laplace transform

In this section we remind the reader some results from the theory of Laplace transform and discuss how

to compute the inverse Laplace transform efficiently and accurately. Let f be a p.d.f. and define by φ

the corresponding Laplace transform

φ(z) = Lf(z) =

∫ ∞
0

e−zxf(x)dx, Re(z) ≥ 0.

The following results are well-known:

(i) If f is sufficiently smooth, then

f(x) = L−1{φ(z)}(x) =
1

2πi

∫ c+i∞

c−i∞
ezxφ(z)dz, (44)

where c is an arbitrary positive number.
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(ii) Let F be the c.d.f. corresponding to f and F̄ := 1 − F . Then LF (z) = φ(z)/z and LF̄ (z) =

(1− φ(z))/z.

Let us now discuss how to compute the inverse Laplace transform efficiently. Assume that the function

φ is analytic in C \ (−∞, 0] and it converges to zero uniformly as z → ∞ in this domain. Note that

these conditions, while rather restrictive in general, are always satisfied in examples used in the present

paper. We begin by writing the inverse Laplace transform in an equivalent form

f(x) = Im

(
1

π

∫ c+i∞

c

ezxφ(z)dz

)
, x ≥ 0, (45)

which follows from the fact φ(z) = φ(z). Now we choose a in the second quadrant (that is, arg(a) ∈
(π/2, π)), rotate the contour of integration and change the variable of integration z = c+ au and obtain

the following integral representation

f(x) = Im

(
aecx

π

∫ ∞
0

euRe(a)xeiu Im(a)xφ(c+ au)du

)
, x ≥ 0. (46)

The above integral is more convenient to work with, compared to (45), for the following reason: the

integrand decays exponentially fast in (46) as Re(a) < 0 .

In the computations in Sections 4, 5 and 6, we typically choose −0.5 ≤ Re(a) ≤ −0.1, Im(a) = 1

and 0.25 ≤ c ≤ 5. To compute the oscillatory integral (46), we use the Filon’s quadrature (Filon, 1928;

Fosdick, 1968). This entails approximating φ(c+ au) locally by a polynomial of degree two (using three

discretization points), and integrating the result against the exponential function. In total, we typically

truncate the integral in (46) at a point in the interval [250, 500] and use between 500,001 and 1,000,001

unevenly spaced discretization points to evaluate the resulting integral.
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